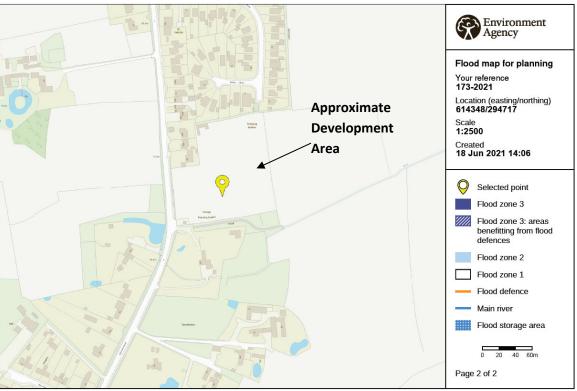


Land West of Norwich Road, Tacolneston

FLOOD RISK AND DRAINAGE STRATEGY INITIAL ASSESSMENT

Date:		Prepared By:
	June 2021	FRAC
GHB Reference:	173/2021/FRADS	Elizabeth Rahim, M.Eng (Hons.) CEng MICE Associate, G.H. Bullard & Associates LLP
Revision: D1	Status: D – Draft P – Planning C - Construction	Checked By: J. J. J


G.H. Bullard & Associates LLP, 27 Barton Road, Thurston, Suffolk, IP31 3PA Tel: 01359 235071 Fax: 01359 231138 Web-site: <u>http://www.ghbullard.co.uk/</u>

Registered in England and Wales

Jeff Horner B.Eng (Hons) V.A.T. Reg. No. 460 461171

1.0 INTRODUCTION

- 1.1. This flood risk and drainage strategy initial assessment is produced to explain how the site is affected by various forms of flooding and how the proposed development can mitigate the potential impact on flooding. A location plan is shown in **Appendix A**.
- 1.2. The report is produced for the sole use by Earlswood Homes.
- 1.3. The information provided within this report is based on the best available data currently recorded or provided by a third party. The accuracy of this report is therefore not guaranteed and does not obviate the need to make additional appropriate searches, inspections and enquiries.
- 1.4. An illustrative site layout plan (refer to **Appendix B**) showing how this quantum of development can be accommodated on the site. It is an indicative layout only and does not form part of the application as such. However, this initial flood risk assessment and drainage strategy has been prepared on the basis of the illustrative site layout to demonstrate that this development can be undertaken without it being at risk from flooding on site or off site.
- 1.5. The National Planning Policy Framework (NPPF, February 2019), Section 14 (Meeting the challenge of climate change, flooding and coastal change), Paragraph 155 states that: *"Inappropriate development in areas at risk of flooding should be avoided by directing development away from areas at highest risk, but where development is necessary, making it safe without increasing flood risk elsewhere."*
- 1.6. The NPPF recommends the Environment Agency (EA) Flood Maps as a starting point for Flood Risk Assessment. An extract from the EA Flood maps is reproduced in Figure 1.1 below.

© Environment Agency copyright and / or database rights 2021. All rights reserved. © Crown Copyright and database right 2021. Ordnance Survey licence number 100024198.

Figure 1.1 – EA Flood Map (Rivers and Seas)

- 1.7. Industry best practice requires assessment of all flooding sources to be carried out. Despite this document having now been superseded by the NPPF, Figure 3.2 of the "PPS25: Development and Flood Risk" (PPS25) Practice Guide lists five key sources of flooding:
 - *i.* Fluvial;
 - *ii.* Tidal;
 - *iii.* Pluvial;
 - iv. Groundwater; and
 - v. Infrastructure Failure.

2. FLUVIAL FLOODING

- 2.1. Fluvial flooding is the flooding associated with rivers. This can take the form of:
 - *i.* Inundation of floodplains from rivers and watercourses;
 - *ii.* Inundation of areas outside the floodplain due to influence of bridges, embankments and other features that artificially raise water levels;
 - *iii.* Overtopping of defences;
 - *iv.* Breaching of defences;
 - v. Blockages of culverts;
 - *vi.* Blockages of flood channels or corridors.
- 2.2. Figure 1.1 shows that the site is located within Flood Zone 1 where the risk is greater than 1 in 1000 (0.1% AEP).
- 2.3. Environment Agency Mapping shows that the site is at low risk of flooding.

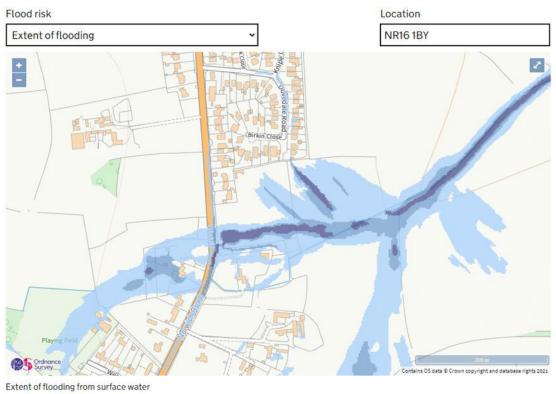
3. TIDAL FLOODING

- 3.1. Tidal flooding is a risk of water levels from the sea or an estuary exceeding the normal tidal range. This can take the form of:
 - *i.* Overtopping of defences;
 - *ii.* Breaching of defences;
 - *iii.* Other flows (fluvial surface water) that could pond due to tide locking;
 - *iv.* Wave action.
- 3.2. The Environment Agency Flood Map for Rivers and Seas shows the site is located within Flood Zone 1, where the likelihood of fluvial flooding is greater than 0.1% AEP (1in1000). However, the site is located too far from the sea to be affected by tidal flooding.

4. PLUVIAL FLOODING

- 4.1. Pluvial flooding is a risk of overland flows and ponding associated with extreme rainfall events. This can take the form of:
 - *i.* Sheet run-off from adjacent land (urban or rural)
 - *ii.* Surcharged sewers
- 4.2. As rain falls everywhere within the United Kingdom, there will always be a residual risk of flooding from extreme rainfall events.
- 4.3. The Environment Agency has produced maps with risk classifications that show the risk of flooding from surface water run-off. The maps show that the site is at medium risk of surface

water flooding, 1 in 100 (1% AEP). Therefore, consideration has to be given location of residential units in order to maintain a safe access during times of flood and also to ensure the flow path is not impeded.

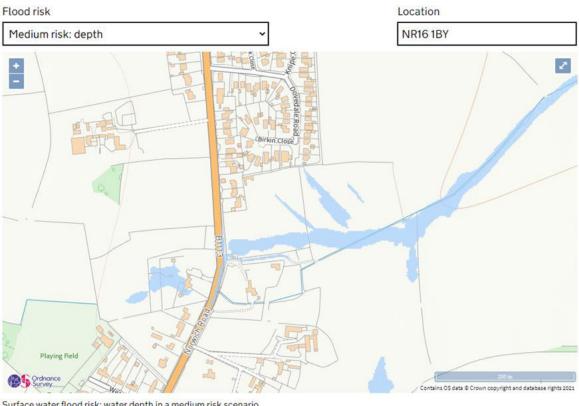

4.4. An extract for the area showing the extent of flooding from all forms of flooding is reproduced in Figure 4.1 below, with the following risk;

High risk means that each year this area has a chance of flooding of **greater than 3.3%.** Flooding from surface water is difficult to predict as rainfall location and volume are difficult to forecast. In addition, local features can greatly affect the chance and severity of flooding;

Medium risk means that each year this area has a chance of flooding of between **1% and 3.3%.** Flooding from surface water is difficult to predict as rainfall location and volume are difficult to forecast. In addition, local features can greatly affect the chance and severity of flooding.

Low risk means that each year this area has a chance of flooding of between **0.1% and 1%.** Flooding from surface water is difficult to predict as rainfall location and volume are difficult to forecast. In addition, local features can greatly affect the chance and severity of flooding.

Very low risk means that each year this area has a chance of flooding of **less than 0.1%**. Flooding from surface water is difficult to predict as rainfall location and volume are difficult to forecast. In addition, local features can greatly affect the chance and severity of flooding.



High Medium O Low Very Low Cocation you selected

Figure 4.1 – Surface water flooding extents High to Very Low Risk.

4.5. An extract for the area showing the extent of flooding in the Medium Risk Scenario is reproduced in Figure 4.2 below. The flood depth on the site is between zero to 300mm flood depth.

Surface water flood risk: water depth in a medium risk scenario Flood depth (millimetres)

Over 900mm 🔵 300 to 900mm 🔵 Below 300mm 🔶 Location you selected

Figure 4.2 – Surface water flooding extents 1% to 3.33%

4.6. The flood map appears to show some anomalies within the field of development. These appear not to coordinate with the contours on the site, as shown by the two images below.

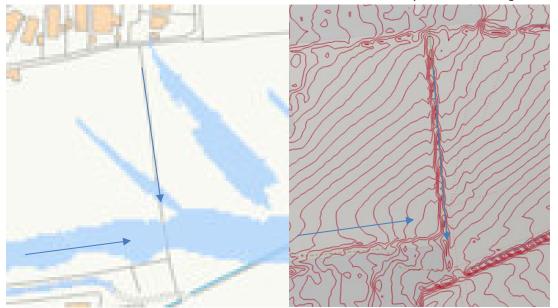


Figure 4.2: Surface water medium risk map and LiDAR generated contour map.

4.7. It can be seen that predicted surface water flooding set at 45 degrees does not follow any natural depression, whereas the flood water shown along the bottom of the image does follow a natural depression as shown by the contours. This surface water will be mostly generated from rain

falling within the site. As the site will be managing the surface water that falls within, this risk can be mitigated.

- 4.8. It should be noted that to the north of the development site, there is a residential area served by a surface water public sewer. This will reduce the inflow to the site. This public sewer discharges into a watercourse to the east.
- 4.9. A plan of the existing features is shown in **Appendix C** and identifies that mentioned above and also identifies other constraints of the site.

5. GROUNDWATER FLOODING

- 5.1. Groundwater flooding is a risk of the water table rising after prolonged rainfall to emerge above ground level remote from a watercourse. It is most likely to occur in low lying areas underlain by aquifers of high vulnerability.
- 5.2. The Environment Agency has mapped groundwater vulnerability and Figure 7.1 below shows the site is not located over a vulnerable aquifer.

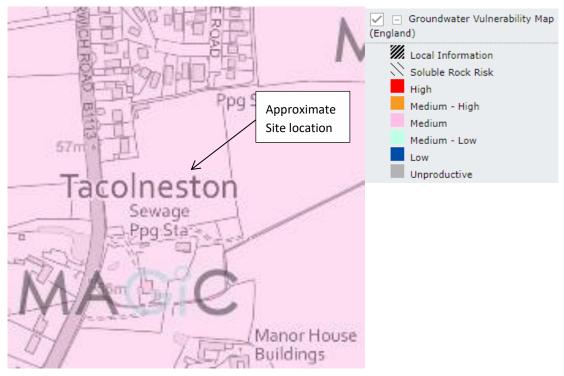


Figure 7.1 – EA Groundwater Vulnerability Zones

5.3. Given the soil type and the proximity of the watercourses, allowing an outlet for groundwater, the risk of water coming up to the surface through the ground is considered to be Low. Any water that does come up through the surface would drain to the watercourses near to the site.

6. INFRASTRUCTURE FAILURE FLOODING

- 6.1. Infrastructure failure flooding is a risk of collapse, failure or surcharging of man-made structures and drainage systems. This could take the form of:
 - *i.* Reservoirs;
 - ii. Canals;
 - *iii.* Burst water mains;
 - iv. Blocked sewers;
 - v. Failed pumping stations;
- 6.2. The Environment Agency have mapped failure of reservoirs, and this indicates there are no near effects of reservoir failure impacting the site, therefore the risk to the site is low.
- 6.3. The risk of flooding from blocked sewers is considered to be medium as any flood water would flow to the existing watercourses located at the site boundary.

7. SEQUENTIAL TEST

- 7.1. The local planning authority (LPA) may require this test to see if there are any reasonably available sites in the area at a lower flood risk on which the development could take place.
- 7.2. The scope of the sequential test is set by the LPA, unless this site is allocated within the local development plan.
- 7.3. The layout has taken the sequential approach within the proposed site boundaries, buy locating the development on the higher ground.

DRAINAGE STRATEGY

8. PROPOSED DRAINAGE

- 8.1. The proposed development comprises of a residential development with associated access road and open spaces. The layout takes the sequential approach, by placing the residential units outside the predicted pluvial flood areas. Refer to **Appendix B** for the development plan.
- 8.2. Site characteristics:
 - Total development area is 1.2ha
 - Proposed impermeable area is 0.5ha
 - The greenfield rate based on the proposed impermeable area is Q_{bar} = 1.6 l/s, Refer to the Micro-Drainage calculations in **Appendix D**.

Surface Water Disposal

- 8.3. In accordance with Government and Local Plan Policies and the requirements of the Building Regulations, surface water run-off from the development will be drained at source in a sustainable way by making full use of Sustainable Drainage Systems (SuDS) where possible.
- 8.4. The SuDS hierarchy dictates that infiltration at source is considered first. After infiltrating at source has been considered, the next stage is to deal with run-off in individual catchments, followed finally by site wide drainage solutions. Run-off from the development should not adversely impact upon drainage systems outside of the site boundary.
- 8.5. Detailed surface water drainage design should take into account all three key SuDS principles in equal measure:
 - *i.* Reducing peak quantity;
 - *ii.* Improving quality; and
 - *iii.* Providing amenity and biodiversity value.
- 8.6. The geology is superficial deposits of Lowestoft formation; Diamicton. A BGS borehole describes the upper lays as clay. Therefore, it is unlikely that infiltration techniques will work.
- 8.7. It is proposed to discharge the runoff from the site to the existing watercourse to the south-east, at a controlled peak rate of 1.6l/s, utilising on-site attenuation in the form of a swale and detention basin to achieve this. The proposed drainage arrangement is shown on plan in Appendix E.
- 8.8. Micro-Drainage has been used to design the detention basin, assessing the volumes associated with the 1 in 100 year event plus an allowance for 40% climate change and 10% creep. The calculations are attached in **Appendix F**.
- 8.9. The quality of water has to be considered and although the run-off from the road is a low hazard, this will still pass through two stages of treatment, the first being the swale and the second being the basin. These in combination will provide sufficient cleansing for all the water.

Exceedance

- 8.10. In an exceedance event in which rainfall surpasses the design capacity, there should be no vulnerable buildings at risk of flooding.
- 8.11. The exceedance flow paths have been shown on both plans in Appendix C & E.

8.12. Site ground levels will be locally contoured to deflect water away from building thresholds, with floor levels being set at least 150mm above surrounding ground levels. The exceedance flow path will be directed around the building and towards the existing watercourses, mimicking the current flow path.

9. ADOPTION & MAINTENANCE

9.1. It is important to establish the adopting authorities at an early stage to define the requirement and how these meet the standards. In accordance with the new Sewage Sector Guidance, the water authority will be adopted the majority of the surface water system.

10. FOUL WATER DISPOSAL

10.1. The foul water from the site will gravity fall to the pumping station in the southwest corner, via a piped network. Capacity will be available via the infrastructure charge mechanism supported by the water authority.

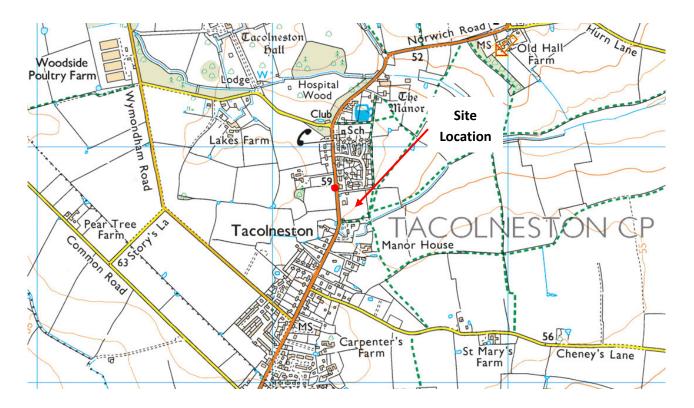
10. SUMMARY

- 10.1. It has been demonstrated that the site is located within Flood Zone 1.
- 10.2. Table 12.1 summarises the probability of the site flooding from the five key sources as listed in PPS25.

Source	Description	Risk	
Fluvial	Rivers	Flood Zone 1	(-0. 19/)
Tidal	Seas	Flood zone 1	(<0.1%)
Pluvial	Surface Water	Medium	(3.3% to 1%)
Groundwater	Aquifers	Low	-
Infrastructure failure	Reservoirs Blocked Sewers	Outside maximum extent of flooding Very Low	(Very Low)

Table 12.1 – Flood Risk Summary

- 10.3. The sequential approach has been taken to locate the units away from the predicted flood flow path.
- 10.4. Run-off from this development will be discharged to a watercourse at a restricted flow rate, utilising a detention basin for attenuation.
- 10.5. The exceedance flow is directed away from vulnerable buildings and infrastructure and outflows along its original path.
- 10.6. It is considered that the risk of flooding to the site has been adequately considered and therefore development of the site with the proposed drainage system does not pose an unacceptable flood risk either to occupants of the site or to others off site.


11. LIST OF APPENDICES

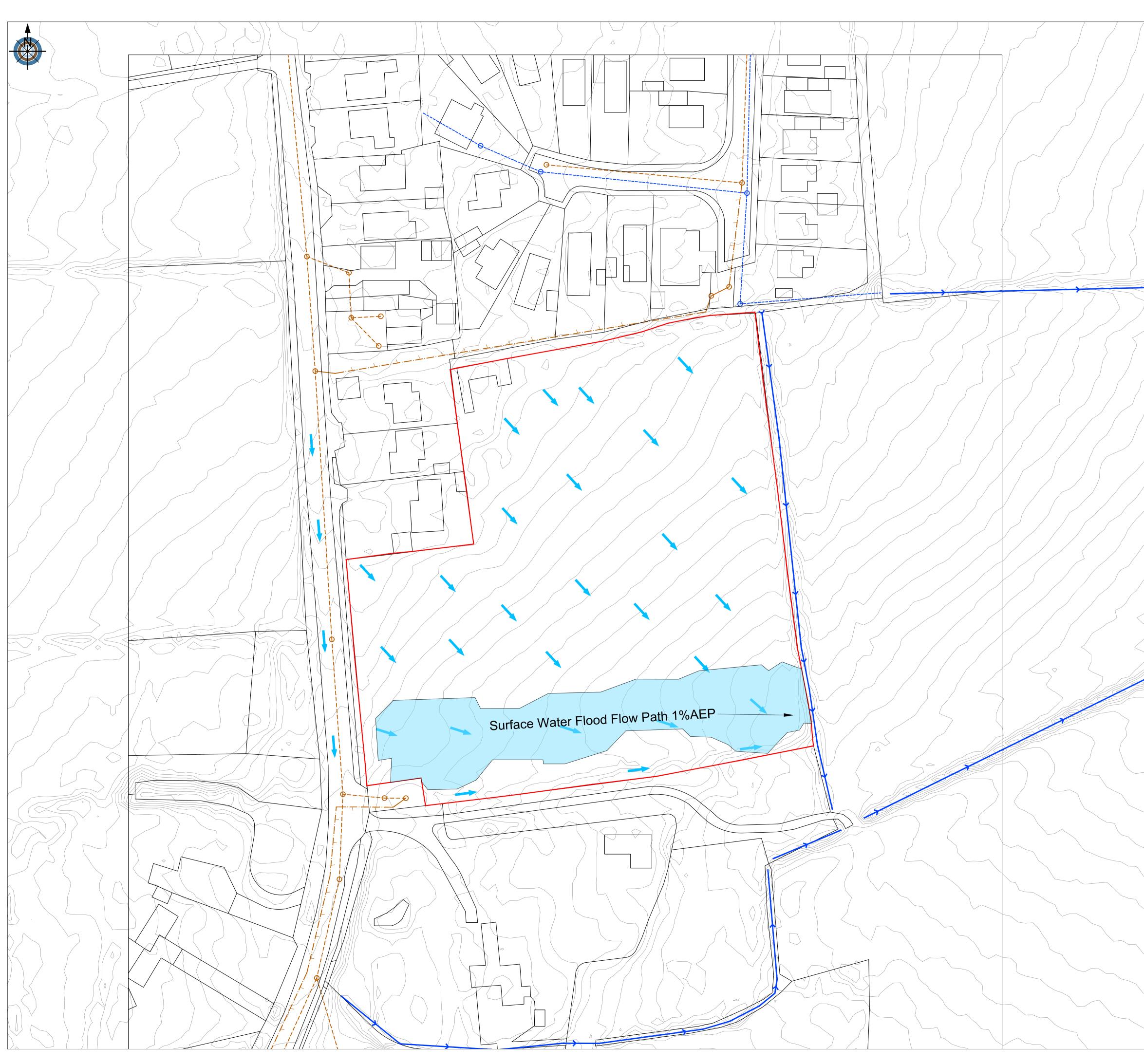
Appendix A-Location PlanAppendix B-Proposed Layout PlanAppendix C-Existing Drainage Features PlanAppendix D-Greenfield Rate CalculationsAppendix E-Proposed Drainage LayoutAppendix F-Micro-Drainage Pond Design Calculations

APPENDIX A

Location Plan

APPENDIX B

Proposed Layout Plan



APPENDIX C

Existing Drainage Features Plan

 <u>NOTES:</u> This drawing is to be read in conjunction with GHB series 000/2021 drawings and documents and any other relevant project team documents. Preliminary Issue - This drawing is not to be used for construction or detailed pricing purposes. Any work undertaken before approvals are received (in writing) are at risk of abortive works. This drawing has been prepared solely for the purpose of obtaining a Planning Consent based on information available and planning requirements at the date of issue only.
Legend-
Site Boundary- Area: 12,360m ² Existing Open Channel Watercourse Overland Flowpaths
GreenfieldGreenfield run-off rate: 1.6 l/s \overline{Q} = 3.3 l/s/haGeology:Lowestoft Formation - Clay.
Existing Foul water Sewer Existing Surface Water Network
P1 21/06/21 Initial Issue Revision Date Description COpyright CHRullard & Accordates IIP
Civil and Traffic Engineering Consultants 27 Barton Road, T: (01359) 235071 T: (01250) 221120
F: (01359) 231138 W: http://www.ghbullard.co.uk Partnership No. OC383830, Registered in England and Wales Client: Earlswood Homes Ltd.
Norwich Road, Tacolneston
Drawing Title:
Existing Site Plan Layout
Scale: 1:500 @ A1 Date: JUNE 2021 Drawn: JWT Checked: JAH
DWG Reference: 173-2021.DWG Status: FOR INFORMATION
Drawing Number: 173/2021/01 P1
P# = Preliminary, C# = Construction, AB# = As Built

APPENDIX D

Greenfield Rate Calculations

G H Bullard & Associates		Page 1
27 Barton Road Thurston	176-2021	
Bury St Edmunds	Tacolneston	
Suffolk IP31 3PA	Greenfield	Mirro
Date 11/06/2021 17:40	Designed by JAH	Drainage
File	Checked by	Diamage
Micro Drainage	Source Control 2018.1.1	I

ICP SUDS Mean Annual Flood

Input

Return Period (years)100Soil0.400Area (ha)1.000Urban0.000SAAR (mm)675RegionNumberRegion

Results 1/s

QBAR Rural 3.3 QBAR Urban 3.3 Q100 years 11.6 Q1 year 2.8 Q30 years 7.8 Q100 years 11.6

APPENDIX E

Proposed Drainage Plan

 <u>NOTES:</u> 1. This drawing is to be read in conjunction with GHB series 000/2021 drawings and documents and any other relevant project team documents. 2. Preliminary Issue - This drawing is not to be used for construction or detailed pricing purposes. Any work undertaken before approvals are received (in writing) are at risk of abortive works. 3. This drawing has been prepared solely for the purpose of obtaining a Planning Consent based on information available and planning requirements at the date of issue only.
Legend-
Site Boundary- Area: 1.2 ha
Attenuation Basin- Volume: 405m ³
1% AEP+40%cc Swale
Flow Control- Discharge rate: 1.6 l/s
2m Service Strip/Maintenance Easement
LIDAR Contours (0.2m)
Γ
P1 21/06/21 Initial Issue
Revision Date Description © Copyright Image: Copyright
GHBullard & Associates LLP Civil and Traffic Engineering Consultants
27 Barton Road, T: (01359) 235071 Thurston
F: (01359) 231138SuffolkW: http://www.ghbullard.co.ukIP31 3PA
Partnership No. OC383830, Registered in England and Wales Client: Earlswood Homes Ltd.
Project:
Norwich Road, Tacolneston
-
Drawing Title:
Indicative Surface Water Drainage
Site Plan Layout
Scale: 1:500 @ A1
DWG Reference: 173-2021.DWG
Status: FOR INFORMATION
Drawing Number: Revision: 173/2021/02 P1
P# = Preliminary, C# = Construction, AB# = As Built

APPENDIX F

Micro Drainage Basin Calculations

G H Bullard & A		+ ~ ~							Page 1
				170	0.0.01				raye I
27 Barton Road	Thurs	ston	L		-2021				
Bury St Edmunds				Taco	olnesto	n			
Suffolk IP31 3PA					40%cc B	Micco			
Date 21/06/2021 15:31					igned b	- Micro			
File Attn Basin FSR.SRCX					-	Drainago			
		Checked by JAH Diding Source Control 2018.1.1							
Micro Drainage				Soui	rce Con	trol 2	2018.1	.1	
Sumr	<u>mary c</u>	f R	esults	for 1	00 <u>y</u> ear	Retu	rn Per	iod (+40%)	
	Storm			Max	Max	Max	Max	Status	
		Ever	nt	Level	Depth C	ontrol	Volume		
				(m)	(m)	(l/s)	(m³)		
				53.427		1.1			
				53.490		1.2			
				53.550		1.3			
				53.607		1.4			
				53.638 53.657		1.4 1.5			
				53.657		1.5			
				53.680		1.5			
				53.705		1.5			
				53.710		1.5			
				53.716		1.6			
				53.711		1.5			
	2160	min	Summer	53.696	0.496	1.5	304.6	O K	
	2880	min	Summer	53.680	0.480	1.5	294.1	ОК	
	4320	min	Summer	53.649	0.449	1.5	272.7	O K	
	5760	min	Summer	53.618	0.418	1.4	252.6	O K	
				53.592			235.5		
				53.569			220.2		
				53.547		1.3			
	15	min	Winter	53.453	0.253	1.2	147.6	ΟK	
					0 000		100 7		
		min	Winter	53.523	0.323	1.3	190.7	O K	
		min	Winter	53.523	0.323		190.7	O K	
		min	Winter	53.523	0.323		190.7	O K	
	30					1.3			
	30	Stor	m	Rain	Flooded	1.3 1 Disch	arge Ti	me-Peak	
	30		m	Rain	Flooded	1.3 1 Disch Volu	arge Ti 1me		
	30	Stor	m	Rain	Flooded	1.3 1 Disch	arge Ti 1me	me-Peak	
	30	Stor Even	m t	Rain	Flooded Volume (m³)	1.3 d Disch Volu (m ²	arge Ti 1me	me-Peak	
	30	Stor Even min	m t	Rain (mm/hr)	Flooded Volume (m³)	1.3 d Disch Volu (m ²	arge Ti ime 3)	me-Peak (mins)	
	30 15 30	Stor Even min min	m t Summer Summer	Rain (mm/hr) 141.917	Flooded Volume (m ³) 0.(0.0	1.3 d Disch Volu (m ²	arge Ti ume 3) 84.3	me-Peak (mins) 27	
	30 15 30 60	Stor Even min min min	m t Summer Summer Summer	Rain (mm/hr) 141.917 91.958	Flooded Volume (m ³) 0.(0.(0.(1.3 1 Disch Volu (m ²)) 1	arge Ti ime 3) 84.3 93.7	- Peak (mins) 27 42	
	30 15 30 60 120	Stor Even min min min min	m t Summer Summer Summer Summer	Rain (mm/hr) 141.917 91.958 56.713	Flooded Volume (m ³) 0.(0.(0.(0.(0.(1.3 1 Disch Volu (m ²)) 1) 1 1	arge Ti ime 3) 84.3 93.7 80.5	me-Peak (mins) 27 42 72	
	30 15 30 60 120 180	Stor Even min min min min min	m t Summer Summer Summer Summer Summer	Rain (mm/hr) 141.917 91.958 56.713 33.812	Flooded Volume (m ³) 0.(0.(0.(0.(0.(0.(0.(1.3 1 Disch Volu (m ²)) 1) 1 2	arge Ti ime 3) 84.3 93.7 80.5 96.5	me-Peak (mins) 27 42 72 130	
	30 15 30 60 120 180 240	Stor Even min min min min min min	m t Summer Summer Summer Summer Summer	Rain (mm/hr) 141.917 91.958 56.713 33.812 24.675	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.3 1 Disch Volu (m ²)) 1) 1 2) 2	arge Ti ime 3) 84.3 93.7 80.5 96.5 04.8	me-Peak (mins) 27 42 72 130 190	
	30 15 30 60 120 180 240 360 480	Stor Even min min min min min min min min	m t Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 141.917 91.958 56.713 33.812 24.675 19.628 14.150 11.224	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1.3 1 Disch Volu (m ²)) 1) 1 2 2 2 2 2 2 2 2	arge Ti me 3) 84.3 93.7 80.5 96.5 04.8 09.9 16.2 20.0	me-Peak (mins) 27 42 72 130 190 250 368 488	
	30 15 30 60 120 180 240 360 480 600	Stor Even min min min min min min min min	m t Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 141.917 91.958 56.713 33.812 24.675 19.628 14.150 11.224 9.372	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1.3 i Disch volu (m ²)) 1) 1 2 2 2 2 2 2 2 2 2 2	arge Ti me 3) 84.3 93.7 80.5 96.5 04.8 09.9 16.2 20.0 22.3	me-Peak (mins) 27 42 72 130 190 250 368 488 606	
	30 15 30 60 120 180 240 360 480 600 720	Stor Even min min min min min min min min	m t Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 141.917 91.958 56.713 33.812 24.675 19.628 14.150 11.224 9.372 8.084	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1.3 i Disch volu (m ²)) 1) 1 2 2 2 2 2 2 2 2 2 2 2 2 2	arge Ti me 3) 84.3 93.7 80.5 96.5 04.8 09.9 16.2 20.0 22.3 23.6	me-Peak (mins) 27 42 72 130 190 250 368 488 606 726	
	30 15 30 60 120 180 240 360 480 600 720 960	Stor Even min min min min min min min min min	m t Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 141.917 91.958 56.713 33.812 24.675 19.628 14.150 11.224 9.372 8.084 6.399	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1.3 i Disch volu (m ²)) 1) 1) 2) 2) 2) 2) 2) 2) 2) 2	arge Ti me 3) 84.3 93.7 80.5 96.5 04.8 09.9 16.2 20.0 22.3 23.6 24.2	me-Peak (mins) 27 42 72 130 190 250 368 488 606 726 964	
	30 15 30 60 120 180 240 360 480 600 720 960 1440	Stor Even min min min min min min min min min	m t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 141.917 91.958 56.713 33.812 24.675 19.628 14.150 11.224 9.372 8.084 6.399 4.596	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1.3 i Disch volu (m ²)) 1) 1 2) 2 2 2 2 2 2 2 2 2 2 2 2 2	arge Ti me 3) 84.3 93.7 80.5 96.5 04.8 09.9 16.2 20.0 22.3 23.6 24.2 20.8	me-Peak (mins) 27 42 72 130 190 250 368 488 606 726 964 1434	
	30 15 30 60 120 180 240 360 480 600 720 960 1440 2160	Stor Even min min min min min min min min min mi	m t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 141.917 91.958 56.713 33.812 24.675 19.628 14.150 11.224 9.372 8.084 6.399 4.596 3.296	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1.3 d Disch Volu (m ²)) 1) 1 2) 2 2 2 2 2 2 2 2 2 2 2 2 2	arge Ti me 3) 84.3 93.7 80.5 96.5 04.8 09.9 16.2 20.0 22.3 23.6 24.2 20.8 00.1	me-Peak (mins) 27 42 72 130 190 250 368 488 606 726 964 1434 1756	
	30 15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880	Stor Even min min min min min min min min min mi	m t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 141.917 91.958 56.713 33.812 24.675 19.628 14.150 11.224 9.372 8.084 6.399 4.596 3.296 2.602	Flooded Volume (m ³) 0.(0.(0.(0.(0.(0.(0.(0.(0.(0.(1.3 i Disch volu (m ²)) 1) 1 2) 2 2 2 2 2 2 2 2 2 2 2 2 2	arge Ti me 3) 84.3 93.7 80.5 96.5 04.8 09.9 16.2 20.0 22.3 23.6 24.2 20.8 00.1 99.0	me-Peak (mins) 27 42 72 130 190 250 368 488 606 726 964 1434 1756 2132	
	30 15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320	Stor Even min min min min min min min min min mi	m t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 141.917 91.958 56.713 33.812 24.675 19.628 14.150 11.224 9.372 8.084 6.399 4.596 3.296 2.602 1.862	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1.3 i Disch volu (m ²))) 1) 1 2) 2 2 2 2 2 2 2 2 2 2 2 2 2	arge Ti me 3) 84.3 93.7 80.5 96.5 04.8 09.9 16.2 20.0 22.3 23.6 24.2 20.8 00.1 99.0 81.9	me-Peak (mins) 27 42 72 130 190 250 368 488 606 726 964 1434 1756 2132 2944	
	30 15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760	Stor Even min min min min min min min min min mi	m t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 141.917 91.958 56.713 33.812 24.675 19.628 14.150 11.224 9.372 8.084 6.399 4.596 3.296 2.602 1.862 1.467	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1.3 i Disch volu (m ²)) 1) 1 2) 2 2 2 2 2 2 2 2 2 2 2 2 2	arge Ti me 3) 84.3 93.7 80.5 96.5 04.8 09.9 16.2 20.0 22.3 23.6 24.2 20.8 00.1 99.0 81.9 28.0	me-Peak (mins) 27 42 72 130 190 250 368 488 606 726 964 1434 1756 2132 2944 3752	
	30 15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200	Stor Even min min min min min min min min min mi	m t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 141.917 91.958 56.713 33.812 24.675 19.628 14.150 11.224 9.372 8.084 6.399 4.596 3.296 2.602 1.862 1.467 1.219	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1.3 i Disch volu (m ²)) 1) 2) 2) 2) 2) 2) 2) 2) 2	arge Ti me 3) 84.3 93.7 80.5 96.5 04.8 09.9 16.2 20.0 22.3 23.6 24.2 20.8 00.1 99.0 81.9 28.0 48.3	me-Peak (mins) 27 42 72 130 190 250 368 488 606 726 964 1434 1756 2132 2944 3752 4608	
	30 15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640	Stor Even min min min min min min min min min mi	m t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 141.917 91.958 56.713 33.812 24.675 19.628 14.150 11.224 9.372 8.084 6.399 4.596 3.296 2.602 1.862 1.467 1.219 1.047	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1.3 i Disch volu (m ²)) 1) 1 2 2 2 2 2 2 2 2 2 2 2 2 2	arge Ti me 3) 84.3 93.7 80.5 96.5 04.8 09.9 16.2 20.0 22.3 23.6 24.2 20.8 00.1 99.0 81.9 28.0 48.3 65.3	me-Peak (mins) 27 42 72 130 190 250 368 488 606 726 964 1434 1756 2132 2944 3752 4608 5376	
	30 15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080	Stor Even min min min min min min min min min mi	m t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 141.917 91.958 56.713 33.812 24.675 19.628 14.150 11.224 9.372 8.084 6.399 4.596 3.296 2.602 1.862 1.467 1.219 1.047 0.921	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1.3 i Disch volu (m ²)) 1) 1 2 2 2 2 2 2 2 2 2 2 2 2 2	arge Ti me 3) 84.3 93.7 80.5 96.5 04.8 09.9 16.2 20.0 22.3 23.6 24.2 20.8 00.1 99.0 81.9 28.0 48.3 65.3 79.9	me-Peak (mins) 27 42 72 130 190 250 368 488 606 726 964 1434 1756 2132 2944 3752 4608 5376 6168	
	30 15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080 15	Stor Even min min min min min min min min min mi	m t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 141.917 91.958 56.713 33.812 24.675 19.628 14.150 11.224 9.372 8.084 6.399 4.596 3.296 2.602 1.862 1.467 1.219 1.047 0.921 141.917	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1.3 i Disch volu (m ²))) 1) 1 2) 3 3) 5) 5) 5) 5)	arge Ti me 3) 84.3 93.7 80.5 96.5 04.8 09.9 16.2 20.0 22.3 23.6 24.2 20.8 00.1 99.0 81.9 28.0 48.3 65.3 79.9 88.3	me-Peak (mins) 27 42 72 130 190 250 368 488 606 726 964 1434 1756 2132 2944 3752 4608 5376	
	30 15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080 15	Stor Even min min min min min min min min min mi	m t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 141.917 91.958 56.713 33.812 24.675 19.628 14.150 11.224 9.372 8.084 6.399 4.596 3.296 2.602 1.862 1.467 1.219 1.047 0.921	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1.3 i Disch volu (m ²))) 1) 1 2) 3 3) 5) 5) 5) 5)	arge Ti me 3) 84.3 93.7 80.5 96.5 04.8 09.9 16.2 20.0 22.3 23.6 24.2 20.8 00.1 99.0 81.9 28.0 48.3 65.3 79.9	me-Peak (mins) 27 42 72 130 190 250 368 488 606 726 964 1434 1756 2132 2944 3752 4608 5376 6168 27	

	Associates						Page 2
7 Barton Road	Thurston	17	3-202				
ury St Edmunds	Ta	colne					
uffolk IP31 (18	+40%c	Micco				
ate 21/06/2023	1 15:31	De	signe	d by J	АН		- Micro
ile Attn Basin			-	by JA			Draina
	I FOR. DRCX				1 2018.	1 1	
icro Drainage		50	ource	CONTLO	2010.	. 1 . 1	
0			100 -		+ D		
<u>Sun</u>	<u>nmary of Result</u>	<u>s ior</u>	<u>100 </u>	<u>ear Re</u>	eturn Pe	eriod (+40%)	<u>)</u>
	Storm	Max	Max	Max	Max	Status	
	Event				L Volume	beacab	
		(m)	(m)	(1/s)			
	60 min Winter				4 233.9		
	120 min Winter				5 275.7 5 298.5		
	180 min Winter 240 min Winter				5 298.5 5 313.3		
	360 min Winter				5 313.3 5 331.7	0 K	
	480 min Winter					Flood Risk	
	600 min Winter					Flood Risk	
	720 min Winter					Flood Risk	
	960 min Winter					Flood Risk	
	1440 min Winter	53.780	0.580	1.6	5 363.0	Flood Risk	
	2160 min Winter	53.764	0.564	1.6	5 351.2	Flood Risk	
	2880 min Winter	53.745	0.545	1.6	5 338.6	0 K	
	4320 min Winter	53.708	0.508	1.5	5 312.7	O K	
	5760 min Winter				5 286.2		
	7200 min Winter				4 261.2		
	8640 min Winter 10080 min Winter				4 239.1 3 219.5		
	Storm	Rair	n Flo	oded Di	scharge	Time-Peak	
	Event		r) Vol		Volume	(mins)	
			(1	n³)	(m³)		
	60 min Winte	r 567	13	0.0	191.2	70	
	120 min Winte			0.0	208.1	128	
	180 min Winte			0.0	216.7	186	
	240 min Winte			0.0	222.1	246	
	360 min Winte			0.0	228.6	362	
	480 min Winte	r 11.2	24	0.0	232.5	478	
	600 min Winte	r 9.3	72	0.0	234.8	596	
	720 min Winte	r 8.0	84	0.0	236.0	712	
		C 2	99	0.0	236.5	940	
	960 min Winte				000 4	1200	
	1440 min Winte	r 4.5		0.0	232.4	1386	
	1440 min Winte 2160 min Winte	r 4.5 r 3.2	96	0.0	427.6	1996	
	1440 min Winte 2160 min Winte 2880 min Winte	r 4.5 r 3.2 r 2.6	96 02	0.0	427.6 425.4	1996 2252	
	1440 min Winte 2160 min Winte 2880 min Winte 4320 min Winte	r 4.5 r 3.2 r 2.6 r 1.8	96 02 62	0.0 0.0 0.0	427.6 425.4 405.7	1996 2252 3164	
	1440 min Winte 2160 min Winte 2880 min Winte 4320 min Winte 5760 min Winte	r 4.5 r 3.2 r 2.6 r 1.8 r 1.4	96 02 62 67	0.0 0.0 0.0 0.0	427.6 425.4 405.7 591.1	1996 2252 3164 4088	
	1440 min Winte 2160 min Winte 2880 min Winte 4320 min Winte 5760 min Winte 7200 min Winte	r 4.5 r 3.2 r 2.6 r 1.8 r 1.4 r 1.2	96 02 62 67 19	0.0 0.0 0.0 0.0 0.0	427.6 425.4 405.7 591.1 614.0	1996 2252 3164 4088 4968	
	1440 min Winte 2160 min Winte 2880 min Winte 4320 min Winte 5760 min Winte	r 4.5 r 3.2 r 2.6 r 1.8 r 1.4 r 1.2 r 1.0	96 02 62 67 19 47	0.0 0.0 0.0 0.0	427.6 425.4 405.7 591.1	1996 2252 3164 4088	

G H Bullard & Associates	5						Page 3
27 Barton Road Thurston	l	173-20	21				
Bury St Edmunds		Tacoln	eston				
Suffolk IP31 3PA	1%+40%	1%+40%cc Basin					
Date 21/06/2021 15:31	Design	ed by J	AH			— Micro Drainage	
File Attn Basin FSR.SRCX Checked by JA							Diamage
Micro Drainage		Source	Contro	1 2018	.1.1		
	<u>R</u>	ainfall	Details				
Rainfall M			FSR		nter St		
Return Period (ye		land and T	100		Cv (Sum		
ке M5-60		Land and V 2(vales).000 Sho		Cv (Win torm (m		
	tio R).432 Lo				
Summer St	corms		Yes	Clima	te Chan	ge %	+40
	Ti	.me Area	Diagran	<u>n</u>			
	Tot	tal Area	(ha) 0.50	0			
Time (mins) From: To:			s) Area : (ha)	1			
0 4	4 0.167	4	8 0.167	8	12	0.167	
0 4	4 0.167	4	8 0.167	8	12	0.167	
0 4	4 0.167	4	8 0.167	8	12	0.167	
0 4	4 0.167	4	8 0.167	8	12	0.167	
0 4	4 0.167	4	8 0.167	8	12	0.167	
0 4	4 0.167	4	8 0.167	8	12	0.167	
0 4	4 0.167	4	8 0.167	8	12	0.167	
0 4	4 0.167	4	8 0.167	8	12	0.167	
0 4	4 0.167	4	8 0.167	8	12	0.167	
0 4	4 0.167	4	8 0.167	8	12	0.167	
0 4	4 0.167	4	8 0.167	8	12	0.167	
0 4	4 0.167	4	8 0.167	8	12	0.167	
0 4	4 0.167	4	8 0.167	8	12	0.167	
0 4	4 0.167	4	8 0.167	8	12	0.167	
0 4	4 0.167	4	8 0.167	8	12	0.167	
0 4	4 0.167	4	8 0.167	8	12	0.167	
0 4	4 0.167	4	8 0.167	8	12	0.167	
0 4	4 0.167	4	8 0.167	8	12	0.167	
0 4	4 0.167	4	8 0.167	8	12	0.167	

©1982-2018 Innovyze

G H Bullard & Associates		Page 4
27 Barton Road Thurston	173-2021	
Bury St Edmunds	Tacolneston	
Suffolk IP31 3PA	1%+40%cc Basin	Mirro
Date 21/06/2021 15:31	Designed by JAH	Drainage
File Attn Basin FSR.SRCX	Checked by JAH	Diamacje
Micro Drainage	Source Control 2018.1.1	

Model Details

Storage is Online Cover Level (m) 53.800

Tank or Pond Structure

Invert Level (m) 53.200

Depth (m) Area (m²) Depth (m) Area (m²)

0.000 550.0 0.600 709.8

Orifice Outflow Control

Diameter (m) 0.031 Discharge Coefficient 0.600 Invert Level (m) 53.100